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cutoff Phenomena for Guided Waves in Moving

L. J. DU, ST~ENT MEMBER, IEEE, AND

Absfract—This paper treats the propagation of electromagnetic

waves in the interior of a waveguide that is filled with a moving
medium. The medium is assumed to be homogeneous, isotropic, and
lossless, and to move with a constant velocity along the axis of the
waveguide. The Maxwell-Minkowski equations f or the electro-
magnetic fields are solved by means of a pair of vector potential

functions similar to those frequently used for stationary media.

The fields inside the wavegnide are derived for both rectangular

and cylindrical waveguides.
The well-known cutoff phenomenon for a waveguide is found to

be modified in an interesting way when the medium inside the wave-

guide is moving The results show that for a slowly moving medium

(a medium for which n(3<1, where n is the index of refraction and B
is the velocity of the medium divided by the velocity of light in
vacuum), there are two critical frequencies, separating three fre-
quency ranges in each of which there is a different type of propagation.
For a high-speed medium (n~ > 1), it is found that there is no cut-

off phenomenon at all, although there is one critical frequency

separating two frequency ranges in which the propagation is
different.

lNTRODUCTION

T
H 1.S PAPER considers the propagation of elec-

tromagnetic waves in the interior of a waveguide

that is filled with a moving medium. The medium

is assumed to be homogeneous, isotropic, and Iossless,

with constitutive parameters p and e, and to move at

constant velocity fi along the axis of the waveguide.

The waveguide is assumed to have perfectly conducting

walls and to be infinitely long. The same problem has

been discussed by Collier and Tai [1] under the as-

sumption that the velocity of the medium is much

smaller than that of light. In this paper we shall treat

the case where the velocity of the medium can have any

value up to the velocity of light. The purpose of the

paper is to show how the familiar “cutoff” phenomenon

for a waveguide is modified when the medium inside is

moving. This effect is not apparent when the velocity

of the medium is assumed to be small,

DEVELOPMENT OF THE THEORY

The electromagnetic fields inside a waveguide are

governed by Maxwell’s equations

—

VXE=–; (1)
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VXP =$+7 (2)

v .D=p (3)

v .B=o (4)

which, as we know from the Special Theory of Relativ-

ity, are valid for any medium, moving or stationary. In

(l)-(4), ~ and ~ are the electric and magnetic field in-

tensities, ~ and ~ are the electric and magnetic flux

densities, and p and ~ are the charge and current densi-

ties. All quantities are measured in M KS units in a

coordinate system that is stationary with respect to the

walls of the m-aveguide.

Because the medium is moving, the constitutive rela-

tions are different from those that would apply for a

stationary medium. The modified constitutive relations

for a medium moving with constant velocity were first

derived correctly by Minkowski [2], and his results

have been put into a compact form by Tai [3]. Assuming

the velocity of the medium is in the z-direction, v = zJi,

the result is

D= G. Z+ QXZ7 (5)

Z=p;.z–axz (6)

where

(7)

‘[
aOO;=OaO 1

1
(8)

001

a= I–P’

1 – %Zflz
(9)

9L = v’/.lp@r@r (lo)

/’3 = V]c (11)

1
~.—_. the velocity of light in vacuum

N“KOCO
(12)

and where p and c are the permeability and permittivity

of the medium.1 Equations (5) and (6) are valid for any

velocity of the medium up to the speed of light.

In this discussion we shall be interested in the normal

modes associated with the interior of the waveguide. We

assume that in the region under consideration there are

~~ and 6are measured in a reference frame that is stationary with
respect to the medium,
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no sources, and all fields are harmonic with time-depen-

dence e–~ti’. Since the medium is also assumed to be

lossless, we then have ~= O and p = O. On substituting

(5) and (6) into (l)-(4), the Maxwell equations become

DI x z = iuJ. n (13)

—
Dlxn= —iwei. z (14)

z(a) = o (15)

D1. (G. R) = o (16)

where D1 is the differential operator

DI = v + ha. (17)

Two types of potential functions will be introduced

to describe the electromagnetic fields in the waveguide.2

Since DI. ~1 X ~ = O and ~IX ml U= O for any vector ~

and scalar U whose components have continuous second

partial derivatives, we may write

P;SD = ~1 X A (18)

where X is a suitable vector potential function, and

where the superscript “e” indicates that the fields asso-

ciated with X are ‘(electric” (TM) modes. Substituting

(18) into (13) gives

Dlx B–&.&Al=o, (19)

and hence we may set

~e = i@A – DIU (20)

where U is a suitable scalar potential function.

If we define another vector function ~, such that

A, = :*A (21)

and impose the gauge relation

~1. A ~ = ;w,ueaz U (22)

between xl and U, it is not difficult to show in terms of

cartesian coordinates that ZI has to satisfy the equation

(D. .Dl) Xl + k’aZl = () (23)

where

Da=va+a (24)
a

(25)

k = u~ge. (26)

2The derivation of the potential functions given here closely fol-
lows that given previously by Collier and Tai [1], and by Tai [4].

Equation (23), when written out, reads

= O (27)

The field vectors are then given in terms of Xl as

(29)

where ~–-l is the inverse of Z

A similar procedure can be followed to find the equa-

tions satisfied by the potential functions ~ and V asso-

ciated with fields @ and ~m of magnetic type. The re-

sult is given as follows:

1=
-j@= __ a-l . [D, x (:-m)] (30)

(31)

where F and 71 are related by

The gauge condition imposed on ~1 and V is

D1. F1 = &_opea2V. (33)

~1 has to satisfy the same equation as ~1.

The field solution in the waveguide can kle divided

into two basic modes, TE and TM. We assume that the

z-axis is the longitudinal axis of the waveguide. For TM

modes, the field components may be derivecl from an

electric vector potential function ~ = ,2X. For TE mocles,

the field components may be derived from a magnetic

vector potential ~ = 2F. For this particular case where

Z and F have only one component in the z-direction,

we have

The Rectangular Wavegu;de

For the rectangular waveguide, we consider the

geometry shown in Fig. 1.

The vector potential functions satisfying the appro-

priate boundary conditions for this geometry are

A = 2A = 2A Osin~xsin~ye<h’ (36)
XIJ yo

and

lr
~ = .i?~ = ,$Fo cos = z cos — yei}”.

%(J yo

(37)
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‘t

Fig. 1. The rectangular waveguide.

Substituting (36) or (37) into (27), we find that h must

be given by

where

’02=(:)2+(-Y (39)

Each set of integers m and 1 corresponds to a given

mode, which will be designated as the TMfiz, or TE~z,

mode. The expressions for the electric and magnetic

field vectors for the TM modes may be obtained from

~ by means of (28) and (29), and the fields for the TE

modes may be obtained from ~ by means of (30) and

(31). The results of this calculation are listed in the

Appendix.

The Cylindrical Wavegu~de

For the cylindrical waveguide we consider the geome-

try shown in Fig. 2. ~ and ~ satisfy (27), which in

cylindrical coordinates becomes

— 1{}~+k2a ; = o. (40)
a

The proper solutions for ~ and ~ for this geometry are

given by

and

(41)

(42).
sin

where ~~(kcr) is the Bessel function of order m. Sub-
stituting (41) or (42) into (40), we find that “h” must

again satisfy (38), where now k. is given by

k, = @ for TM modes (43)
Yo

t
1. = ~ for TE modes (44)

ro

/
r

/

\
-x

r.

z

Fig. 2. The cylindrical waveguide.

and where p~t denotes the roots of the Bessel function

J~(p) = O and p~z’ denotes the roots of the derivative of

the Bessel function ~J~(p) /dp = O. The subscripts m

and 1 denote, respectively, the order of the Bessel func-

tion and the index of the root [5]. The complete expres-

sions for the electric and magnetic fields may be ob-

tained from Z and (28) and (29) for TM modes, and

from ~ and (30) and (31) for TE modes. The results of

this calculation are also given in the Appendix.

THE CUTOFF BEHAVIOR

In this section we discuss the propagation characteris-

tics of the waveguide filled with a moving medium. The

formulas and conclusions given will apply to both rec-

tangular and cylindrical waveguides (or to a waveguide

with any other cross-sectional geometry, if k, is appro-

priately defined). kc will assume the value given in (39)

for rectangular waveguides and the value given in (43)

or (44) for cylindrical waveguides.

Consider (38) for h. When the velocity of the moving

medium is small, so that n~ <1, cutoff will occur if

k2a < k=2, (45)

and hence the cutoff frequency is

When the frequency is less than j., the fields are atten-

uated along the guide axis, but unlike an ordinary

waveguide below cutoff, there is a phase velocity

VP= 1/Q in the negative z-direction for both solutions.

When the frequency is slightly above f., there is no at-

tenuation, but the two waves both have phase velocities

in the negative z-direction (but they have different

phase velocities). Finally, if the frequency is large

enough so that

kZa2 – ,4C2a > C02Q2— (47)

which can be manipulated to the form

-f?f+ = Zr:---”v’
1–/32

%2–B”

(48)
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Fig. 3. Frequency ranges for wave propagation in the waveguide,
with the medium moving in the +Z direction, (a) The low velocity
case: n@< 1. (b) The high velocity case:@> 1.

then waves can propagate in either direction without

attenuation, but again with different phase velocities.

If v=O, then j3=0, and we have

f+=fc=z
%rdpe

(49)

which is the usual cutoff frequency in the stationary

case.

When n~ >1, a will be negative while –wQ is positive.

In this case there will be no cutoff phenomenon at all.

At low frequencies, the term contributed by the square

root in (38) predominates, so the phase velocities of the

two waves are in opposite directions. At higher fre-

quencies —-cJ2is always greater than the square root, so

both waves have phase velocities in t’he +Z direction.

The transition between these two cases occurs at

v’
l–@2

f. f.. ‘c_. ——.
27r<l.Loco

(50)
~2 –. fp

We note that the relation nfl >1 is the condition for

Cerenkov radiation in the medium. A summary of these

results is presented in Fig. 3.

There are an infinite number of modes which can exist

in the waveguide, but for a given frequency, only a

finite number of them can propagate freely, assuming

the velocity of the medium in the wave:guide is small, so

that n~ <1. However, if the velocity c~f the medium is

large enough so that n~ >1, then all modes can propa-

gate freely at any frequency.

SOME RELATIONS BETWEEN THE WAVE-

GUIDE PARAMETERS

For the case n~ <1, several parameters can be ex-

pressed in terms of the cutoff frequency:

kc = 2n-fc4pca (51)
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‘= -WQ*”W-W3211”
(52)

w——
(1 – ny?’)c {

(1 – ?t’)p + ?L(l – f?’)

“[1- (;)211’2}‘f>fc)“3’

‘=-w”kiawc~-++)l’”(54)

1

= (1 – n’&)c {
W(1 — n2)@ f iu.n(l — pz)

“[1-(211’2}‘f’’fc)‘“)
where UC= 2~fG. For f >f,, the guide phase velocity and

guide wavelength are, respectively,

; == (1 – ?@’)czlo=—
/{

(1 – n’)pfn(l – pz)

[1-($11’[2)“’”
A,=; =(1–tz2p’)hJ/{ (1 – 7’Z’)B* ?L(I – pq

“[1-($)21”2)‘“7’
where G= 1/ ~poeo and AO is the free space wavelength.

The TM~z characteristic wave impedance is

Zm~”= ~ = – ~ (rectangular waveguides) (58)
u z

E,
—_ —_ # (cylindrical waveguides)

H@
(59j

r

/%+cOL?
=-

wea

——
~ ~k2a2 — k.ca

—— (rz~<lornp>l) (60)
wea

= +-($nl’2@@<1andf‘fc) ’61)
=+[1-(;}1”2(@l<1and f <:f.) (62)

—
where T = ~p/e is the intrinsic impedance of the me-

dium. Similarly, the TEm,l characteristic ‘wave i m-

pedance is also given by equations (58) and (59), which

for this case yield

= +-(3T’’2’n~<’andf >fJ

= %NH2T1’2
(n@<1 and./ <j’).
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It is interesting to note that the product

TM TE
Z.1 Z.1 = ?.P= ~

e

at all frequencies and for all velocities of the medium.

ZnLT~ and Z~ITE, as given in (61) and (62) and in (64)

and (65), are of the same form as when the medium in

the waveguide is stationary.

The power flow in the rectangular waveguide for TM

modes is

where eoz is defined as equal to 1 when 1= O and equal to

2 when 1>0. For TE modes it is

yoxokc’[Fol’ h + c!Jr2
P= (72/3 <1 or n~ > 1) (68)

2@meol up#a3

In cylindrical waveguides the corresponding expressions

are

CONCLUSIONS

From the Maxwell-Minkowski equations for the elec-

tromagnetic field in a moving medium it has been shown

how the electromagnetic fields may be constructed from

a pair of vector potential functions X and ~, which are

derived using a technique similar to that commonly

used for stationary media. The solutions for ~ and ~

appropriate to a rectangular and a cylindrical waveguide

have been given, as well as the formulas for the fields.

These results show the dependence of the fields on the

velocity of the medium inside the waveguide.

The propagation constant for the fields in the wave-

guide has been examined to determine how the motion

of the medium affects the cutoff behavior. It was found

that the well-known cutoff frequency for a waveguide is

modified when the medium inside is moving. For nfi <1,

corresponding to a slowly moving medium, there are

two critical frequencies f, and j+. For j <f., the fields

are attenuated, as in a conventional waveguide, but also

have a phase velocity, unlike a conventional waveguide.

For ~c <f <f+, the fields are unattenuated, but all fields
have a phase velocity in the – z direction. For f >f+,

waves may travel unattenuated in either direction in the

waveguide, but with a different phase velocity in each

direction. For n~ >1, corresponding to the case of

Cerenkov radiation, there is one critical frequency f_.
For f<f-, waves may travel with a phase velocity in

either direction. For f>f–, all solutions have a phase

velocity in the +Z direction. Also for @3> 1, there is no

m-ro2[AO[2 d

[ II

2Z?+OJQ
cutoff phenomenon in the usual sense, Waves may

P= ~ Jm(kc?’) — (tz@<1 or nfl > 1) propagate unattenuated at any frequency.
2% T=r, wp2ca3

/vn\ Finally, some formulas for the waveguide characteris-

7rro’\/401’ d
=*

[
; Jm(kw’)

2eom

for TM modes and

P= “k’2F0’’[1-&l

1
‘ [1 – (fG/f)’l’/’ ““)

—
r-r~ az,u~~~

. (?@ < 1) (71)

k + WQ

rmz(h’o) ~pe2a3

(n@ <1 or n~ > 1) (72)

=+ ‘k’l!mF012[1-%lJm’(kcyO)‘1‘aft;]’”(n~<1) (73)

for TE modes. Although the phase velocities are as

shown in Fig. 3, the power flow for the two waves in the

guide are, in each case, of the same magnitude and in

opposite directions.

When the velocity i approaches zero or when the

constitutive parameters of the medium equal those of

free space Q will approach zero and a will approach one;

all the results obtained then reduce to the familiar ones

for the medium at rest.

tic impedance and for the power flow in a waveguide

filled with a moving medium have been given.

APPENDIX

In this appendix we list the complete expressions for

the electric and magnetic fields inside the waveguide.

For the rectangular waveguide shown in Fig. 1, the

fields of the TM~z mode may be obtained by substitut-

ing ~ given in (36) into (28) and (29). The result is

AO (h + wQ) m~ mr lr
Ez=– cos — x sin — yeih’ (74)

copeaz Xil XIJ yo

AO(ti + wQ) lir m~ lr
Eu=– — sin — x cos — yeih” (75)

wpeaz yo Xo yo

E.= AO b+ ‘k + ‘Q)2 sin~xsin~ yeh$ (76)
[ iwpea2 1 Xo yo

A. mr l?r
Hv = — ———— cos E x sin — ye~bz.

ua xo Xil yo

(77)

(78)
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The fields for

tuting F given

FO ihr
Ez=— —

ea yO
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the TE~ z mode are obtained by substi-

in (37) into (30) and (31), with the result:

m7r lT
cos — x sin — yeih’

*o Yo

F. m~ l?r
E. = –— —sin~xcos —yeihz

ea *O .Ko yo

FO(k + afl) mr mr 17r
H, = —— sin ———x cos —- yeih’

cdpcaz Xo %0 yo

Fo(lz + wQ) lT m~ llr
Hg = — cos —— x sin — yeik’

upea2 yo *O yo

Hz= Fo[ioJ + “ + ‘Q)2]cos~zcoszyeihg
iwpea2 *O yo

(79)

(80)

(81)

(82)

(83)

For the cylindrical waveguide shown in Fig. 2, the

fields of the TM~ ~ mode are obtaineci from ~ given in

(41), and (28) and (29), with the result

avm(kcr) Cos
M+eih..

d(k.r) sin
(84)

sin
~ Jm(kcr) m+e{h’ (85)
Y Cos

[

(/2 + @!J)’

1
(:0s

EZ=AO i.+ Jn(k,r) m~e’h’ (86)
iupea2 sin

mAO 1 sin
H,GT— — Jm(k,Y) mq$eih” (87)

pa r Cos

k.~ o dJ* (k.?’) COS
H4=– — m~eihz;

d(k.?) sin
(88)

pa

and the fields of the

(42), (30), and (31):
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TEti mode are obtained from F of

Fom 1 sin
E.=f — — Jrn(k,r) m~eihz

ea Y Cos

k,FO dJ~(k,r) COS
E4=— mbeih ’

ea d(k.r) sin

k,Frj(k + u Q) dJ~(k.r) COS
Hr=– mrpeih’

upea2 d(k,r) sin

FOm(k + w!2) 1 sin
Ho=+ — J~(k,r) Cos m@@.

apea2 r

[

(h + (L@’

1
Cos

HZ=FO b+ Jn(k,r) mdleih’.
iwpea’ sin
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