358 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-14, NO. 8, AUGUST, 1966

Cutoff Phenomena for Guided Waves in Moving Media

L. J. DU, STUDENT MEMBER, IEEE, AND R. T. COMPTON, JR., MEMBER, TEEE

Abstract—This paper treats the propagation of electromagnetic
waves in the interior of a waveguide that is filled with a moving
medium. The medium is assumed to be homogeneous, isotropic, and
lossless, and to move with a constant velocity along the axis of the
waveguide. The Maxwell-Minkowski equations for the electro-
magnetic fields are solved by means of a pair of vector potential
functions similar to those frequently used for stationary media.
The fields inside the waveguide are derived for both rectangular
and cylindrical waveguides.

The well-known cutoff phenomenon for a waveguide is found to
be modified in an interesting way when the medium inside the wave-
guide is moving The results show that for a slowly moving medium
(a medium for which n8 <1, where n is the index of refraction and g8
is the velocity of the medium divided by the velocity of light in
vacuum), there are two critical frequencies, separating three fre-
quency ranges in each of which there is a different type of propagation.
For a high-speed medium (ng>1), it is found that there is no cut-
off phenomenon at all, although there is ome critical frequency
separating two frequency ranges in which the propagation is
different.

INTRODUCTION
THIS PAPER considers the propagation of elec-

tromagnetic waves in the interior of a waveguide

that is filled with a moving medium. The medium
is assumed to be homogeneous, isotropic, and lossless,
with constitutive parameters y and ¢, and to move at
constant velocity 7 along the axis of the waveguide.
The waveguide is assumed to have perfectly conducting
walls and to be infinitely long. The same problem has
been discussed by Collier and Tai [1] under the as-
sumption that the velocity of the medium is much
smaller than that of light. In this paper we shall treat
the case where the velocity of the medium can have any
value up to the velocity of light. The purpose of the
paper is to show how the familiar “cutoff” phenomenon
for a waveguide is modified when the medium inside is
moving. This effect is not apparent when the velocity
of the medium is assumed to be small.

DEVELOPMENT OF THE THEORY

The electromagnetic fields inside a waveguide are
governed by Maxwell's equations

vxE= -8 a
ot )
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which, as we know from the Special Theory of Relativ-
ity, are valid for any medium, moving or stationary. In
(1)-(4), E and H are the electric and magnetic field in-
tensities, D and B are the electric and magnetic flux
densities, and p and 7T are the charge and current densi-
ties. All quantities are measured in MKS units in a
coordinate system that is stationary with respect to the
walls of the waveguide.

Because the medium is moving, the constitutive rela-
tions are different from those that would apply for a
stationary medium. The modified constitutive relations
for a medium moving with constant velocity were first
derived correctly by Minkowski [2], and his results
have been put into a compact form by Tai [3]. Assuming
the velocity of the medium is in the gz-direction, 9=wv3,
the result is

D=&E+OXH (5)
B=ua-H—-QXE 6)
where
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a O 0—'
a=0 a 0 (8)
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1 = /ue/poeo (10)
B =1/¢ (11
1
¢ = —== = the velocity of light in vacuum  (12)
v ogo

and where u and e are the permeability and permittivity
of the medium.! Equations (5) and (6) are valid for any
velocity of the medium up to the speed of light.

In this discussion we shall be interested in the normal
modes associated with the interior of the waveguide. We
assume that in the region under consideration there are

! pand e are measured in a reference frame that is stationary with
respect to the medium,
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no sources, and all fields are harmonic with time-depen-
dence e~i«t, Since the medium is also assumed to be
lossless, we then have J=0 and p=0. On substituting
(3) and (6) into (1)-(4), the Maxwell equations become

D; X E = jwpa-T (13)
Di X H= — iwea-E (14)
Dy (ea-E) = 0 (15)
Dy (ue H) = 0 (16)
where D; is the differential operator
D; = V + iwf. (17

Two types of potential functions will be introduced
to describe the electromagnetic fields in the waveguide.?
Since Di-DiXW =0 and Dy X D:U=0 for any vector
and scalar U whose components have continuous second
partial derivatives, we may write

pa-He =D, X A (18)
where 4 is a suitable vector potential function, and
where the superscript “e” indicates that the fields asso-
ciated with 4 are “electric” (TM) modes. Substituting
(18) into (13) gives

Dy X E° —iwdl =0, (19)
and hence we may set
Ee = jwd — DU (20)
where U is a suitable scalar potential fugction.
If we define another vector function 4; such that
Ay =a-4A (1)
and impose the gauge relation
D;- Ay = iwpea’lU (22)

between A; and U, it is not difficult to show in terms of
cartesian coordinates that 4; has to satisfy the equation

(D.- D)4y + k24, = 0 (23)
where
— w _
Dy =Vo+— 0 (24)
a

G lig0 10 25)

a = ¥ - z— —

ox 7 ay a 03z
k= wvpe. (26)

2 The derivation of the potential functions given here closely fol-
lows that given previously by Collier and Tai {1], and by Tai [4].
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Equation (23), when written out, reads
9% 9? 1 92 2i0Q 9 w?Q? -
|i"~ —_—— — + k%0 | A4
ax?  dyr a 9z2? a 03 a
=0 (27)
The field vectors are then given in terms of A; as
— = . DyD,-4
Fe = w4y — L——I—) (28)
Twuea®
— 1= = )
He = — a_l'[D1 X (OZ—I'A1)] (29)

M

where ! is the inverse of a.

A similar procedure can be followed to find the equa-
tions satisfied by the potential functions F and V asso-
ciated with fields £ and H” of magnetic type. The re-
sult is given as follows:

- 1= =
Er = ——a1.[Dy X (a1 Fy)] (30)
€
— = _ DD:\F
On = jwat-Fy — J(—li (31)
Twuea’
where F and F, are related by
F.=aF. (32)
The gauge condition imposed on Fyand Vis
D, -Fy = jwuea®V. (33)

T has to satisfy the same equation as 4.

The field solution in the waveguide can be divided
into two basic modes, TE and TM. We assume that the
z-axis is the longitudinal axis of the waveguide. For TM
modes, the field components may be derived from an
electric vector potential function 4 =44. For TE modes,
the field components may be derived from a magnetic
vector potential F=4#F. For this particular case where
A and F have only one component in the zdirection,
we have

A =441 =ad=A=34 (34)
Fo=8F, = a-F = F = 4F. (35)

The Rectangular Waveguide

For the rectangular waveguide, we consider the
geometry shown in Fig. 1.

The vector potential functions satisfying the appro-
priate boundary conditions for this geometry are

mw Ir

A = 24 = $4¢sin — & sin — yeih? (36)
%o Yo
and
— — mm Ir X
F = 3F = 8F, cos — & cos — ye'hs, (37)
Xo Yo
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Fig. 1. The rectangular waveguide.

Substituting (36) or (37) into (27), we find that %z must
be given by

= — wQ + VEk%W® — kla

mr\? Im\?
- (3) + )
Yo Yo
Each set of integers m and 1 corresponds to a given
mode, which will be designated as the TM,,;, or TE,.;,
mode. The expressions for the electric and magnetic
field vectors for the TM modes may be obtained from
A by means of (28) and (29), and the fields for the TE
modes may be obtained from F by means of (30) and
(31). The results of this calculation are listed in the
Appendix.

(38)

where

(39)

The Cylindrical Waveguide

For the cylindrical waveguide we consider the geome-
try shown in Fig. 2. 4 and F satisfy (27), which in
cylindrical coordinates becomes

1 9 ad 1 92 1 92 2t 0
[75;{’5;}+;?£2 PR TR
—~ w292+kza} {E} = 0.
a F

The proper solutions for 4 and F for this geometry are
given by

(40)

— cos .
A =34 =340J,(kr) = mpet= 4y
sin
and
_ cos
F = &F = 8FJ(kr) | e (42)
sin

where J,.(k) is the Bessel function of order m. Sub-
stituting (41) or (42) into (40), we find that “A” must
again satisfy (38), where now &, is given by

Pmi

ks = —  for TM modes (43)
Yo
L z/

k. = —  for TE modes (44)
¥

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES

AUGUST

Y

Fig. 2. The cylindrical waveguide.

and where p,,; denotes the roots of the Bessel function
Tx(p) =0 and p,.;/ denotes the roots of the derivative of
the Bessel function 98J,(p)/dp=0. The subscripts m
and / denote, respectively, the order of the Bessel func-
tion and the index of the root [5]. The complete expres-
sions for the electric and magnetic fields may be ob-
tained from 4 and (28) and (29) for TM modes, and
from F and (30) and (31) for TE modes. The results of
this calculation are also given in the Appendix.

TraE CUuTOFF BEHAVIOR

In this section we discuss the propagation characteris-
tics of the waveguide filled with a moving medium. The
formulas and conclusions given will apply to both rec-
tangular and cylindrical waveguides (or to a waveguide
with any other cross-sectional geometry, if k. is appro-
priately defined). k, will assume the value given in (39)
for rectangular waveguides and the value given in (43)
or (44) for cylindrical waveguides.

Consider (38) for 4. When the velocity of the moving
medium is small, so that #8 <1, cutoff will occur if

ke < k2, (45)
and hence the cutoff frequency is
ke ST
fm V iy (46)
27/ poeo ”2(1 - »82)

When the frequency is less than f,, the fields are atten-
uated along the guide axis, but unlike an ordinary
waveguide below cutoff, there is a phase velocity
7,=1/Q in the negative z-direction for both solutions.
When the frequency is slightly above f,, there is no at-
tenuation, but the two waves both have phase velocities
in the negative z-direction (but they have different
phase velocities). Finally, if the frequency is large
enough so that

R’ — kla > w?Q? 47
which can be manipulated to the form
F>fe = ke /‘/1—ﬁ2 5)
B PV nt— g
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PHASE PROPAGATION IN
-z DIRECTION ONLY
‘/—N—\

PHASE PROPAGATION IN
BOTH DIRECTIONS POSSIBLE

£ !

PROPAGATION WITHOUT
ATTENUATION

(a)

PHASE PROPAGATION IN
+2 DIRECTION ONLY

S— e f,
ATTENUATED WAVES WITH ©
PHASE VELOCITY IN -z
DIRECTION

PHASE PROPAGATION IN
BOTH DIRECTIONS POSSIBLE

f
f-
PROPAGATION WITHOUT AT TENUATION

(b)

Fig. 3. Frequency ranges for wave propagation in the waveguide,
with the medium moving in the -z direction. (a) The low velocity
case: #f3<1. (b) The high velocity case: n8>1.

then waves can propagate in either direction without
attenuation, but again with different phase velocities.
If =0, then 8=0, and we have

ke
2w/ e

which is the usual cutoff frequency in the stationary
case.

When #8>1, a will be negative while —w( is positive.
In this case there will be no cutoff phenomenon at all.
At low frequencies, the term contributed by the square
root in (38) predominates, so the phase velocities of the
two waves are in opposite directions. At higher fre-
quencies —wf) is always greater than the square root, so
both waves have phase velocities in the -z direction.
The transition between these two cases occurs at

k. 4/_f:F
2/ oo n? — §*
We note that the relation #8>1 is the condition for
Cerenkov radiation in the medium. A summary of these
results is presented in Fig. 3.

There are an infinite number of modes which can exist
in the waveguide, but for a given frequency, only a
finite number of them can propagate freely, assuming
the velocity of the medium in the waveguide is small, so
that n8<1. However, if the velocity of the medium is
large enough so that #8>1, then all modes can propa-
gate freely at any frequency.

f+ =fc = (49)

f=i= (50)

SOME RELATIONS BETWEEN THE WAVE-
GUIDE PARAMETERS

For the case nf8<1, several parameters can be ex-
pressed in terms of the cutoff frequency:

ke = Zch\/—EE (51)
- - fc 2711/2
= —w ® el 1 —(— 52
h Q+ awvp i (f) | (52)
e 0 )
Tz (7> } (25 63
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. f 2711/2
k= — 0w+ iawc\/ue[l — (—) ] (54)
= --——1——— {w(l — %) £ twn(l — 82)
(1 — n*6Y¢ B
f 2=71/2 B B
[i- (-) ] bousn 69

where w,=2xf,. For f>f,, the guide phase velocity and
guide wavelength are, respectively,

== (= [ { = penlt - )

LG
Ay = 2h—1—r =(1- n2/32)>\o/ {(1 — ) + n(l — B

0T e

where ¢=1/4/uces and Aq is the free space wavelength.
The TM,.; characteristic wave impedance is

zm L B ectangul ides) (58)
mi = — = — —— (rectangular waveguides 5
‘o, A, & g
L P4 (eylindrical ides) (59
=] = — C. \E
i, 72 cylindrical waveguides 59)
h+ 0
wWea
RN/ ro ,
= —— (1 <1 or nf>1) (60)
wea
JANE
= + 'r/|:1 - <7>:| nB <1 and f > f.) (61)

I

+
i

=3

2 L/2
sia[1-(7)]
w Ie
B <1 and f < f) (62)
where n=\/u_/; is the intrinsic impedance of the me-
dium. Similarly, the TE,; characteristic wave im-

pedance is also given by equations (58) and (59), which
for this case yield

Zmo= 2
h+ »Q
wua )
= im B <1lorus>1) (63)
]"c 271—1/2
=t |:1 — <7) :' (nB<landf>f,) (64)
e NT"
= — 1 — —
T We 77[ <fc
B <1 and f < f). (65)
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It is interesting to note that the product

™ TE o

Zo Z

mi = = —
€

at all frequencies and for all velocities of the medium.
Z.*™ and Z,.;TE, as given in (61) and (62) and in (64)
and (65), are of the same form as when the medium in
the waveguide is stationary.

The power flow in the rectangular waveguide for TM
modes is

1 o Yo__ o
P = Re—f f E X H*-dS
2 [1} 0

h Q
_ XoYo [AO gkeg_—{__w_ (11[8 < 1or nﬂ > 1) (66)
2eomeot wp’ea®
ke Ao|? [t — (r/N)2r2
kL DG
2€0meor a2y\/ﬂé

where ¢, is defined as equal to 1 when /=0 and equal to
2 when [>0. For TE modes it is

_ yoxokczl F0|2 4+ wQ

(B <loruB>1) (68)

Zéoméol wue2a3
xovokl| Fol2 [1 — (f./1)2]1/2
_ k[ B G )
2eoment 026\/ﬂ€

In cylindrical waveguides the corresponding expressions
are

2| Aol121 d 2h + Q
_ ”_'LL_"L[_MM | 2 t<torns>)
2€0m dr =Ty w,U,2Ed3
| 44| e
s 4 lor g 2 1 — (f./f)2 T
2¢e0m dr r=ry 02}1«\/#5
(B < 1) (71)
for TM modes and
_ ke | Fol? [1 - j|fm2(kcro) AT
eon Bo2ry? wuead
(g <lormug>1) (72)
pont| Byl . 1 — (f,/f)2]e
= + The o } Ol l:]. — " jljmz’(kcfo) [—(i/i)—]—
2€0m kc2702 azé‘\/ﬂé

mB<1)y (73)

for TE modes. Although the phase velocities are as
shown in Fig. 3, the power flow for the two waves in the
guide are, in each case, of the same magnitude and in
opposite directions.

When the velocity 7 approaches zero or when the
constitutive parameters of the medium equal those of
free space Q will approach zero and a will approach one;
all the results obtained then reduce to the familiar ones
for the medium at rest.
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CONCLUSIONS

From the Maxwell-Minkowski equations for the elec-
tromagnetic field in a moving medium it has been shown
how the electromagnetic fields may be constructed from
a pair of vector potential functions 4 and F, which are
derived using a technique similar to that commonly
used for stationary media. The solutions for 4 and F
appropriate to a rectangular and a cylindrical waveguide
have been given, as well as the formulas for the fields.
These results show the dependence of the fields on the
velocity of the medium inside the waveguide.

The propagation constant for the fields in the wave-
guide has been examined to determine how the motion
of the medium affects the cutoff behavior. It was found
that the well-known cutoff frequency for a waveguide is
modified when the medium inside is moving. For #f <1,
corresponding to a slowly moving medium, there are
two critical frequencies f, and f,. For f<f,, the fields
are attenuated, as in a conventional waveguide, but also
have a phase velocity, unlike a conventional waveguide.
For f.<f<f,, the fields are unattenuated, but all fields
have a phase velocity in the —gz direction. For f>fy,
waves may travel unattenuated in either direction in the
waveguide, but with a different phase velocity in each
direction. For #f>1, corresponding to the case of
Cerenkov radiation, there is one critical frequency f_.
For f<f.., waves may travel with a phase velocity in
either direction. For f>f_, all solutions have a phase
velocity in the 4z direction. Also for #8>1, there is no
cutoff phenomenon in the usual sense. Waves may
propagate unattenuated at any frequency.

Finally, some formulas for the waveguide characteris-
tic impedance and for the power flow in a waveguide
filled with a moving medium have been given.

APPENDIX

In this appendix we list the complete expressions for
the electric and magnetic fields inside the waveguide.

For the rectangular waveguide shown in Fig. 1, the
fields of the TM ,,; mode may be obtained by substitut-
ing 4 given in (36) into (28) and (29). The result is

Ao (b + Q) mr mr , Ir
y = — ——————— —— COS—— x sin — yeit* (74)
wuea” X0 Xo Yo
Aok + Q) Ir | mr Ir
E, = — ————— —sin — x cos — yei** (75)
wped® Yo Xo Yo
. 4+ 0¥ . mr | I
E, = A¢| tw + ————|sin — xsin — yet? (76)
Twuea’ Xg Yo
Ag Im | mw Ir
H, = — sin —— & cos — yetts 7
ua Yo xo Yo
Ao mm mwr I
H, = — — — cos — x sin — ye?2, (78)

ua X X0 Yo
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The fields for the TE,,; mode are obtained by substi-
tuting F given in (37) into (30) and (31), with the result:

Fo I mr Ir
e = — — COS —— & Sin — yeih? (79)
€@ Yo Xo Yo
Fo mo | m=m I
E, = — — —sin — x cos — ye't* (80)
(12 Xo Yo
Fo(bh + 0Q) mrm m lr
H, = —OS———~—) —sin il X COS il yeths (81)
wuea? Xy %o Yo
Folh + wQ) Ir mar Ir
H, = —————— — cos — xsin — ye'*? (82)
wuea? Yo X0 Yo
I__ h + Q)2 mmw I |
H, = F¢!iw + ——— | cos——x cos — ye*s.  (83)
L iwuea® X0 Yo

For the cylindrical waveguide shown in Fig. 2, the
fields of the TM,,; mode are obtained from A given in
(41), and (28) and (29), with the result

ko Ac(h + Q) dJu(ks) cos

ET - the 84
o () sin moe (84)
m(h + Q) 1
Ey = + Awn(h + oD ——] (/m’) mepeits (85)
wuea? cos

h 4 wQ cos
Ez — 0 |:1,w + L_L)__] m(kcr) md)ezh: (86)

1(_0#5(12 S1n

. on 1 S1 .
H =7 — Tn(ks)  meei (87)
ua ¥ CcOoSs

kedo dJn(ker) cos

wae  d(ks) sin (88)

= — ihz.
H¢-— A z,
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and the fields of the TE,4 mode are obtained from F of
(42), (30), and (31):

Fom
E, =+ —J (kbr) m¢e’“ (89)
€a 08
keFo dJm(ker) cos .
Ey, = —  mpeh: (90)
ea d(kr) sin
EFo(h + «Q) dJ.(kx) cos )
H, = — ’ “®) (k) . mepeths 91)
wuea® d(ker) sin
Fon(h + Q) 1 )
Hd) = + __OM _] (kcf) m¢e'zhz (92)
wuea? 08
4+ @ cos
H,=F, |:zw (—wl] Tn(ker) | moetrs,  (93)
fwuea® sin
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